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The starting point

If A is a one-letter alphabet, the free monoid A* is
isomorphic to the additive monoid N,

It seems natural to extend results on N to A*.
However, one may expect any result on A" to
become trivial on a one-letter alphabet.

Surprisingly enough, this is not always the case...

I I'l F IRIF, CNRS and University Paris Diderot
3/46



An example

Given a language L. C A" and a word u € A*, let

w'L={re€A |urel}
Lut={zc A" |vuc L}

Theorem (Aimeida, Esik, Pin 2017)

A class of regular languages closed under finite
intersection, finite union, quotients and inverse of
length-decreasing morphisms is also closed under
inverse of morphisms.
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For one-letter alphabets

For L C N and k > 0, let

L-1={neN|n+1el}
L+k={neN|knel}

Corollary (Cegielski, Grigorieff, Guessarian 2014)

Let L be a lattice of regular subsets of N such that
if L € L, then . — 1 € L. Then for each positive
integer k, L € L implies L -k € L.
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Zoltan Esik’s original statement (January 07, 2010)

Corollary

The mapping
Vi {Xr:LeV()}

is an isomorphism from the lattice of commutative positive (ld-)varieties to the
sublattice of P(P(N)) consisting of those sets X of finite or ultimately periodic
subsets of N that contain () and N which are closed under union and intersection,
moreover, the decrement operation defined by

X—>X-1={n—-1|n€eX, n>0}
Any such set X is closed under the division operations defined by:
X —>X/d={n|nde X}, d>1.

When restricted to commutative (ld-)varieties, the same mapping creates an order
isomorphism from the lattice of commutative (ld-)varieties to the sublattice of
P(P(N)) consisting of all those sets X of finite or ultimately periodic subsets of N
which are additionally closed under complementation.
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Original motivation

A function f : A* — B is regularity-preserving if,
for each regular language L of B*, f~1(L) is also
regular.

More generally, let C be a class of regular languages.
A function f : A* — B" is C-preserving if, for each
LeC, f71(L)isalsoin C.

Goal. Find a complete description of
regularity-preserving [C-preserving] functions.

Same questions for transductions, that is, relations
from A* to B*.
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Part |

Recognisable sets
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Monoids

A monoid is a set M equipped with an associative
binary operation (the product) and an identity 1 for
this operation.

A monoid M is finitely generated if there exists a
finite subset F' of M which generates M.

Examples. The free monoid A", with A finite.

Given a monoid M, the set P (M) of subsets of M
is a monoid under the product defined, for
X, Y CM, by XY ={zy|zeX,yeY}
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Recognisable subsets of a monoid

A subset P of a monoid M is recognizable if there
exists a finite monoid F', a monoid morphism
@ : M — F and a subset () of F' such that

P =¢7(Q).
Rec(M) = set of recognizable subsets of M .

Theorem (Kleene)

If Ml = A*, then recognizable = rational = regular
(that is, recognised by a finite automaton).
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Recognisable subsets of N

An arithmetic progression is a subset of N of the
form a + rN, with » > 0.

A subset of N is recognizable iff it is a finite union
of arithmetic progressions.

{1,3,4,7,8,9,11,12,13,17,18,22,23,27,28,...} =
{1,3,4,9,11}U{7+5n | n = 0}uU{8+5n |n > 0}
is a finite union of arithmetic progressions.
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Recognisable subsets of a product of monoids

Theorem (Mezei)

Let M = My x --- x M, be a product of monoids.
A subset of M is recognisable iff it is a finite union
of subsets of the form R, x --- x R,,, where each
R; is a recognisable subset of M.

Exercise: find the recognisable subsets of N*.

I I'l F IRIF, CNRS and University Paris Diderot
12/46



Transductions

Given two monoids M and NN, a transduction from
M into NV is a relation on M and N.

If 7: M — N is a transduction, then the inverse
relation 7' : N — M is also a transduction. If

R C N, then

T R)={x e M|7(x)NR# 0}
A function f : M — N is recognizability-preserving
if, for each R € Rec(N), [~ (R) € Rec(M).
Similarly, 7 : M — N is recognizability-preserving if,
for each R € Rec(N), 7 1(R) € Rec(M).
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Part |l

Topological characterizations
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Residually finite monoids

Let M be a monoid. A monoid F separates two
elements x,y € M if there exists a morphism
@ : M — F such that ¢(x) # ¢(y).

A monoid is residually finite if any pair of distinct
elements of M/ can be separated by a finite monoid.

Finite monoids, free monoids, free groups are
residually finite. A product of residually finite
monoids is residually finite.

I I'l F IRIF, CNRS and University Paris Diderot
15/46



Profinite metric

Let M be a residually finite monoid. The profinite
metric d is defined by setting, for u,v € M:

r(u,v) = min{|F| | F is a monoid separating v and v}

d(u,v) = 9T (uv)

with min() = +00 and 27°° = (. Then

d(u,w) < max(d(u,v),d(v,w)) (ultrametric)
d(uw,vw) < d(u,v)
d(wu, wv) < d(u,v)
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Recognizability-preserving functions

Let M and N be two finitely generated, residually
finite monoids. (For instance M = A* and
N = B*).

Theorem (Pin-Silva 2005)

A function M — N is recognizability-preserving iff
it is uniformly continuous.
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Another result

Proposition (Pin-Silva 2005)

The function 7 : M x N — M defined by
7(z,n) = x" is recognizability-preserving.

Corollary. The function u — " (from A* to A*)
is recognizability-preserving. Indeed it can be
decomposed as

A — A" x N A" x N — A*
u — (u, |u|) (u,m) — u"
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Some examples of regularity preserving functions

u— u’ U — Ul
u — ul u — altlaplle
amcbn _> anbmn

UFFUL FF UL — U FF UL FFUOFF UL FFUL
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Part ||

Functions from N to N
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Ultimately periodic functions

A function [ : N — N is ultimately periodic if there
exists t > 0 and p > 0 such that, for all n > ¢,

f(n+p)=f(n).

A function f : N — N is ultimately periodic modulo
n if the function f mod n is ultimately periodic.

A function f : N — N is cyclically ultimately
periodic if it is ultimately periodic modulo n for all
n > 0.
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Regularity-preserving functions from N to N

Theorem (Siefkes 1970, SeiferasMcNaughton 1976)

A function f : N — N s ultimately periodic modulo
n iff for 0 < k < n, the set f~(k + nN) is regular.

Theorem (Siefkes 1970, SeiferasMcNaughton 1976)

A function f : N — N s regularity-preserving iff it is
cyclically ultimately periodic and, for every k € N,
the set (k) is regular.
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Ultimately periodic functions

A function f : N — N is ultimately periodic modulo
k if the function f mod k is ultimately periodic.

It is cyclically ultimately periodic (cup) if it is
ultimately periodic modulo n for all n > 0.

Proposition (Siefkes 70, SeiferasMcNaughton 76)

A function f : N — N js ultimately periodic modulo
n iff for 0 < k < n, the set [~'(k + nN) is regular.
It is regularity-preserving iff it is cyclically ultimately
periodic and (k) is regular for every k € N.

I I'l F IRIF, CNRS and University Paris Diderot
23/46



Two examples

Theorem (Siefkes 1970)

9
The functions n — 2" and n — 2% (exponential
stack of 2's of height n) are cyclically ultimately
periodic and hence regularity-preserving.
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Closure properties

Theorem (Siefkes 70, Zhang 98, Carton-Thomas 02)

Let f,g: N — N be cyclically ultimately periodic
functions. Then so are the following functions:

(1) gof, f+g, fg, [?, and f — g provided that
f>gand lim (f —g)(n) = +o0,
n—o0

(2) (generalised sum) n = > ;e i) f(3),
(3) (generalised product) n = [[o<;c ) /(D).

I I'l F IRIF, CNRS and University Paris Diderot
25/46



Two counterexamples

[Siefkes 1970] The function n — |[/n] is not
cyclically ultimately periodic and hence not
regularity-preserving.

The function n — (2”) is not ultimately periodic
modulo 4 and hence not regularity-preserving.
Indeed

om 2 if nis a power of 2,
< ) mod 4 = ]
n 0 otherwise.

I I'l F IRIF, CNRS and University Paris Diderot
26/46



Recursivity

Let f/: N — {0, 1} be a non-recursive function.
Then the function n — (> -, [(i))!is
regularity-preserving but non-recursive.

Open problem. Is it possible to describe all
recursive regularity-preserving functions, respectively
all recursive cyclically ultimately periodic functions?

One could try to use Siefkes' recursion scheme
(1970).
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Siefkes’ recursion scheme

Let g : N* — N and h : N*+2 - N be cyclically
ultimately periodic functions satisfying three
technical conditions. Then the function [ defined
from g and h by primitive recursion, i.e.

fO,z1,...,2) = g1, ..., xp),
fn+1,2z1,...,28) = h(n,z1,..., 2k, f(n,21,...,27k))

is cyclically ultimately periodic.

I I'l F IRIF, CNRS and University Paris Diderot
28/46



The three technical conditions

(1) h is cyclically ultimately periodic in 2,5 of
decreasing period,

(2) g is essentially increasing in zy,

(3) forall x € N2 1o < h(xy, ..., 75 0).

A function f is essentially increasing in z; iff, for all
2z € N, there exists y € N such that for all z € N,
y < x; implies 2 < f(xy,...,2,).

A function f is c.u.p. of decreasing period in z; iff,
for all p, the period of the function f mod p in z; is
< P
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Part IV

An extension
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Lattice of subsets

Let X be a set. A lattice of subsets of X is a set L
of subsets of X containing () and X and closed
under finite union and finite intersection.

A Boolean algebra of subsets of X is a lattice of
subsets of X closed under complement.

A Pervin space is a pair (X, L)
where L is a lattice of subsets of X.
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Lattice-preserving functions

Let f: X — Y be a map, K be a lattice of subsets
of X and L a lattice of subsets of Y.

Theorem

The following conditions are equivalent:
(1) foreach L€ L, f~(L) € K,
(2) f is a uniformly continuous map from (X, )
to (Y, L).
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Lattice-preserving functions

Let f: X — Y be a map, K be a lattice of subsets
of X and L a lattice of subsets of Y.

The following conditions are equivalent:
(1) foreach L€ L, f~(L) € K,

(2) f is a uniformly continuous map from (X, )
to (Y, L).

Wait a second, what does uniformly continuous
mean in this setting?
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Uniform spaces

A uniformity on a set X is a nonempty set U/ of
reflexive relations (entourages) on X such that:
(1) if a relation U on X contains an element of
U, then U € U, (extension property),
(2) the intersection of any two elements of I/ is in
U, (intersection),
(3) for each U € U, there exists V' € U such that
V'V C U (sort of transitivity).
(4) for each U € U, 'U € U (symmetry).
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Quasi-uniform spaces

A quasi-uniformity on a set X is a nonempty set I/
of reflexive relations (entourages) on X such that:
(1) if a relation U on X contains an element of
U, then U € U (extension property),
(2) the intersection of any two elements of I/ is in
U (intersection),

(3) for each U € U, there exists V' € U such that
V'V C U (sort of transitivity).
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Pervin spaces as quasi-uniform spaces

Let (X, L) be a Pervin space. For each L. € L, let

Up=(XxL)U(Lx X)
={(z,y) e X xX|zeL=yel}

LC

L Le

The sets U, form the subbasis of a quasi-uniformity.
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Uniform continuity

Let X and Y be quasi-uniform spaces. A function
f: X — Y is uniformly continuous if, for each
entourage V of Y, (f x f)~}(V) is an entourage of

Proposition

Let (X,IC) and (Y, L) be two Pervin spaces. A
function f : X — Y is uniformly continuous iff for
each L € L, [~(L) € K.
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Generalized ultrametric

A generalized ultrametric on a set X is a mapping
d: X x X — R" satisfying the following conditions:

(1) forall z € X, d(z,z) = 0.
(2) forall x,y,z € X,
d(z,z) < max(d(z,y),d(y, z)).

Let (X, L) be a Pervin space. Are equivalent:

(1) The associated quasi-uniformity can be
defined by a generalized ultrametric,

(2) The quasi-uniformity has a countable basis,
(3) The lattice L is countable.
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Boolean algebras

If £ is a Boolean algebras, then one has a
uniformity. Moreover if L is countable, this
uniformity can be defined by an ultrametric.

If £ is the set of recognizable subsets of a residually
finite monoid M, then this ultrametric is the
profinite ultrametric.
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Part V

Transductions
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Recognizability-preserving transductions

Let M and N be two finitely generated, residually
finite monoids.

Theorem

A function M — N is recognizability-preserving iff
it is uniformly continuous.

What about transductions from M to N7?
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Completion

Let M be a finitely generated, residually finite

monoid. Let M be the completion of the metric
space (M, d).

Proposition

M is a compact monoid.

Moreover, the set [C(M') of compact subsets of M
is also a compact monoid for the Hausdorff metric.
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Back to transductions

Let M and N be two finitely generated, residually
finite monoids and let 7 : M — N be a
transduction.

Defineamap 7: M — IC(]V) by setting, for each
re M, T(x)=r1(x).

Theorem (Pin-Silva 2005)

The transduction 7 is recognizability-preserving iff T
is uniformly continuous.
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Exercises

Let L be a subset of A*. Let

1
2n+1

L ={uec A" | there exist x,y € A",
2| = |y| =n and zuy € L}
If L is regular, then so is the language
U
p odd prime
The transduction u — u* is regularity-preserving.
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Part VI

p-group languages

Target class §,: the class of languages recognized
by a finite p-group.

Goal. Characterization of G,-preserving functions.
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Fonctions from N to Z

The difference operator /A associates to each
function f : N — 7Z, the function Af : N — 7Z
defined by (Af)(n) = f(n+1) — f(n).

A Newton polynomial is a function f such that
AFf =0 for almost all k.
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Mahler's theorem

Let 6" f = (AF£)(0).

Theorem (Mahler 58)

Let f : N — 7Z be a function. Are equivalent:

(1) f is uniformly continuous for the p-adic metric,
(2) the functions A" f tend uniformly to 0,
(3) the p-adic norm of 6" f tends to 0,
(4)

4) f is the uniform limit of a sequence of Newton
polynomials.
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